BRUNO

A Deep Recurrent Model for Exchangeable Data

Objective of BRUNO:

To generate a sequence of images (or random variables) which is "unordered"

Exchangeable Random Variables

A stochastic process is exchangeable if for all n and all permutations л:

$$
p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)
$$

Theorems for Exchangeability

- De Fenitti's Theorem: It states that a random infinitely exchangeable sequence can be factorised into mixture densities conditioned on some parameter θ which captures the underlying generative process i.e.

$$
P\left(x_{1}, \ldots, x_{n}\right)=\int p(\theta) \prod_{i=1}^{n} p\left(x_{i} \mid \theta\right) d(\theta)
$$

In terms of predictive distributions $p\left(x_{n} \mid x_{1: n-1}\right)$: the de Finetti equation can be written as

$$
p\left(x_{n} \mid x_{1: n-1}\right)=\int p\left(x_{n} \mid \theta\right) p\left(\theta \mid x_{1: n-1}\right) d \theta
$$

Problem

Integral in the equation is intractable

$$
P\left(x_{1}, \ldots, x_{n}\right)=\int p(\theta) \prod_{i=1}^{n} p\left(x_{i} \mid \theta\right) d(\theta)
$$

Alternative to directly modeling de Finetti's Equation

Learn a mapping from input space to an exchangeable process

Gaussian Process:

A collection of random variables $\{f(x): x \in X\}$ is said to be drawn from a Gaussian process with mean function $\mathrm{m}(\cdot)$ and covariance function $\mathrm{k}(\cdot, \cdot)$ if for any finite set of elements $\mathrm{x} 1, \ldots, \mathrm{xm} \in \mathrm{X}$, the associated finite set of random variables $f(x 1), \ldots, f(x m)$ have distribution,

$$
\left[\begin{array}{c}
f\left(x_{1}\right) \\
\vdots \\
f\left(x_{m}\right)
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{c}
m\left(x_{1}\right) \\
\vdots \\
m\left(x_{m}\right)
\end{array}\right],\left[\begin{array}{ccc}
k\left(x_{1}, x_{1}\right) & \cdots & k\left(x_{1}, x_{m}\right) \\
\vdots & \ddots & \vdots \\
k\left(x_{m}, x_{1}\right) & \cdots & k\left(x_{m}, x_{m}\right)
\end{array}\right]\right)
$$

Conditional Distribution of Multivariate Distribution

$$
\begin{gathered}
\mathcal{Y} \sim \mathrm{N}(\mu, \Sigma) \quad \boldsymbol{\mu}=\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right] \quad \Sigma=\left[\begin{array}{cc}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right] \quad \boldsymbol{Y}=\left[\begin{array}{l}
\boldsymbol{y}_{1} \\
\boldsymbol{y}_{2}
\end{array}\right] \\
\left(\boldsymbol{y}_{1} \mid \boldsymbol{y}_{2}=\boldsymbol{a}\right) \sim \mathcal{N}(\overline{\boldsymbol{\mu}}, \bar{\Sigma}), \\
\overline{\boldsymbol{\mu}}=\boldsymbol{\mu}_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(\boldsymbol{a}-\boldsymbol{\mu}_{2}\right) \\
\bar{\Sigma}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
\end{gathered}
$$

Exchangeable Gaussian Process

Covariance matrix of Gaussian Process can be defined in such way that the process becomes exchangeable.

$$
\boldsymbol{\Sigma}=\left[\begin{array}{ccccc}
v & \rho & \rho & \ldots & \rho \\
\rho & v & \rho & \ldots & \rho \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho & \rho & \rho & \cdots & v
\end{array}\right]_{0 \leq \rho<v}
$$

Recurrent Updates

Since the structure of covariance matrix is simple, we can derive recurrent updates.

$$
\mu_{n+1}=\left(1-d_{n}\right) \mu_{n}+d_{n} z_{n}, \quad v_{n+1}=\left(1-d_{n}\right) v_{n}+d_{n}(v-\rho)
$$

Normalization Flow:

Use Real NVP to learn a bijective mapping from input space to Exchangeable Gaussian Process.

Training:

Maximize the the joint log-likelihood

$$
\mathcal{L}=\sum_{n=0}^{N-1} \log p\left(\boldsymbol{x}_{n+1} \mid \boldsymbol{x}_{1: n}\right)
$$

Other Application: Few Shot Learning

Model	$\mathbf{n}=\mathbf{1 , k}=\mathbf{5}$	$\mathbf{n = 5 , k = 5}$	$\mathbf{n = 1 , k = 2 0}$	$\mathbf{n = 5 , k = 2 0}$
Matching Nets	98.1%	98.9%	93.8%	98.5%
BRUNO	86.3%	95.6%	69.2%	87.7%
BRUNO finetuned	97.1%	99.4%	91.3%	97.8%

Related Papers on Exchangeablity

1. Deep Sets (https://arxiv.org/abs/1703.06114)
2. Set Transformer (https://arxiv.org/abs/1810.00825)
3. Conditional BRUNO (http://bayesiandeeplearning.org/2018/papers/40.pdf)
4. Learning Permutation Invariant Representation using Memory Networks (https://arxiv.org/abs/1911.07984)

Thank You!

