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Objective of BRUNO:

To generate a sequence of images (or random variables) which is
“unordered”



Exchangeable Random Variables

A stochastic process is exchangeable if for all n and all permutations 1r:
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Theorems for Exchangeability

e De Fenitti’'s Theorem: It states that a random infinitely exchangeable sequence can be factorised
into mixture densities conditioned on some parameter 6 which captures the underlying generative
process i.e.
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In terms of predictive distributions p(.’cn |:L'1m_1 ), the de Finetti equation can be written as

p(ZnlT1:n1) = / P(2nl0)p(B]T1:0-1)d0,



Problem

Integral in the equation is intractable
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Alternative to directly modeling de Finetti's Equation

Learn a mapping from input space to an exchangeable process



Gaussian Process:

A collection of random variables {f(x) : x € X }is said to be drawn from a Gaussian process with mean
function m(:) and covariance function k(- -) if for any finite set of elements x1,...,xm € X, the associated
finite set of random variables f(x1), ..., f(xm) have distribution,
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Conditional Distribution of Multivariate Distribution
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Exchangeable Gaussian Process

Covariance matrix of Gaussian Process can be defined in such way that the process becomes
exchangeable.
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Recurrent Updates

Since the structure of covariance matrix is simple, we can derive recurrent updates.

Hn+1 = (1 s dn)/ln T3 dnzna Un+1 = (1 T dn)vn -+ dn(v = ,0)



Normalization Flow:

Use Real NVP to learn a bijective mapping from input space to Exchangeable Gaussian Process.
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Training:

Maximize the the joint log-likelihood
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Other Application: Few Shot Learning

Model n=1k=5 n=5k=5 n=1k=20
Matching Nets 98.1% 98.9% 93.8%
BRUNO 86.3% 95.6% 69.2%

BRUNO finetuned 97.1% 99.4% 91.3%

n=5k=20
98.5%
87.7%

97.8%



Related Papers on Exchangeablity

Deep Sets (https://arxiv.org/abs/1703.06114)

Set Transformer (https://arxiv.org/abs/1810.00825)

Conditional BRUNO (http://bayesiandeeplearning.org/2018/papers/40.pdf)

Learning Permutation Invariant Representation using Memory Networks (https:/arxiv.org/abs/1911.07984)
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